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Abstract

Self-organized patterns, realized in non-equilibrium processes, have been widely observed in

physics and chemistry. As a powerful tool to create far-from-equilibrium environments, irradiation

produces a variety of types of defects, which can self-organize through physical interactions and

chemical reactions. Such a process becomes complicated especially when both thermodynamics and

kinetics play critical roles in pattern formation. In this paper, we investigate the formation and

self-organization mechanism of void superlattices in metals and alloys under irradiation through

phase field modeling and simulations. For the first time, three different formation mechanisms of

void superlattices are clearly distinguished according to their thermodynamic origin and reaction

kinetics. It is found that the characteristic length and symmetry of an emerging superlattice is

determined by the interplay of the thermodynamic driving force and the kinetic anisotropy of the

system. Through parametric study, the effects of kinetic coefficients, such as atomic mobility and

irradiation dose rate, on the nucleation, growth, coarsening, coalescence, and ordering of voids are

systematically investigated. The theoretical model developed in this work may provide guidelines

for designing desired self-organized microstructures under irradiation.

1



INTRODUCTION

Self-organization phenomena occur in a number of different fields, including physics,

chemistry and biology, and they have attracted intense research interest. The spontaneous

ordering processes during self-organization usually occur in open and complex systems that

are at non-equilibrium states. Typical self-organization in physics includes phase transi-

tions, such as ferroic (ferroelastic, ferroelectric, ferromagnetic) phase transitions, classical

crystal growth, and Bose-Einstein condensation [1–6]. In literature, it is well known that

the ordering and self-organization during phase transitions is directly associated with spon-

taneous symmetry breaking. For example, ferroelastic/ferroelectric/ferromagnetic domains

are self-organized during phase transitions, and the formation of multi-domain structures is

dictated by the minimization of long range interaction energies (elastic/electrical/magnetic

energies). Note that both characteristic length and symmetry appear during such sponta-

neous ordering processes [7, 8]. The characteristic length is determined by the interplay

between the domain boundary energy and the long range interaction energy of a system,

while the characteristic symmetry is determined by the broken symmetry. In other words,

the self-organization during phase transitions is dominated by thermodynamics (or energet-

ics). Similarly, a few modeling methods, such as the atomic density function theory and

phase field crystal model, are developed to capture the atomic level characteristic length

and symmetry (i.e., lattice parameter and crystal symmetry) [9–12]. In these methods, the

free energy is formulated as a functional of atomic densities, which includes both short-

range and long-range thermodynamic interactions [9, 11–14]. In contrast, the ordering and

self-organization in reaction-diffusion systems in chemistry is usually dominated by kinetics

(dynamics) [15–17]. In the Turing instability, for example, the ordering is dictated by the

dynamic coupling between two (or more) components, which originates from chemical reac-

tions. The competition between different temporal rates and spatial ranges of diffusion for

different components is critical for the occurrence of dynamic instability. A characteristic

length emerges in such a reaction-diffusion process, which is determined by the interplay of

kinetic coefficients (e.g., diffusivity) and reaction terms. In addition, if the kinetic coefficients

or reaction terms are associated with anisotropy (or symmetry breaking), characteristic sym-

metry is also expected during self-organization. Even though the above two different kinds

of self-organizations may be distinguished in terms of thermodynamics and kinetics, real
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systems with both mechanisms involved could exit, especially in complex environments.

Irradiation is a powerful means to create complex environments and develop self-organized

defect structures. On the one hand, as a continuous external stimulus maintains the system

at states far from equilibrium, a large number of lattice defects of either vacancy or self-

interstitial-atom (SIA) type are generated during irradiation. These defects can be either

isolated such as individual vacancies or SIAs, or agglomerate to form such as clusters and

loops, etc. Along with these lattice defects, incorporation of impurities introduced by the

implanting particles including ions and neutrons is possible. On the other hand, the internal

interactions and reactions among those defects are activated, leading to the accumulation,

annihilation, and organization of defects. Typical examples include dynamically-driven com-

positional patterning [18], the ordering of defect clusters and loops, and void and gas bubble

superlattices in pure metals and alloys [19–23]. In general, self-organization under irradiation

takes place as a result of the competition between the kinetics that drives the system towards

equilibrium and the external stimuli that keep the system far from equilibrium. Such a com-

petition has been well understood for the case of nanoscale compositional patterning [18].

However, a good understanding of void and bubble superlattices has yet to be established.

In literature, several different theoretical approaches have been proposed to understand void

superlattice formation. Parallel to phase transition and spinodal decomposition in solid and

liquid solutions [24], thermodynamic descriptions of void formation have been suggested by

Malen[25], Imada [26] and Veshchunov, et al [27], with however incomplete descriptions of

defect production, reaction and annihilation. For instance, in Malen et al. [25], the void

superlattice is regarded as a result of anisotropic elastic interactions among voids, without

contributions from kinetic aspects. Although the elastic anisotropy could lead to ordering

of voids, as indicated by 2D phase field simulations [28], the symmetry selection in 3D cases

is not clear. In particular, the nucleation mechanism and development of superlattices in

elastically isotropic tungsten cannot be well understood. Dynamic instability analysis based

on the so-called rate theory is another popular approach that has been widely adopted in

literature [29–32]. Rate theory captures the dynamic nature of the production, annihila-

tion, and reactions of SIAs and vacancies as well as their agglomerates. However, a term

analogous to Fickian diffusion is usually used for mass transport in this kind of analyses,

and thus the thermodynamic origin of void formation is overlooked. In rate theory, the

vacancy diffusion is driven by a concentration gradient. In contrast, the void formation in
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reality is through a diffusion against the concentration gradient, i.e., the diffusion is driven

by the chemical potential gradient. As a consequence, the link between void formation and

thermodynamic materials properties cannot be captured in rate theory. Theoretically, an

analysis coupling both thermodynamics and kinetics is desired in the investigation of void

lattice organization [33]. In particular, the pattern formation in self-organization could be

related to the anisotropic diffusion of SIAs [33–39] or their clusters such as loops [40]. In

fact, even without elastic anisotropy, 1D SIA diffusion is able to cause bubble superlattice

formation, where a high ratio between the diffusivities of SIA and vacancy is suggested by

2D phase field simulations [38]. In addition, the role of 1D SIA diffusion in void superlattice

formation has been further confirmed by atomic kinetic Monte Carlo (AKMC) simulations

recently in both bcc and fcc crystals. It has been found that void superlattices can form as

a result of spinodal decomposition of voids from the matrix, during which a characteristic

length develops, with the simultaneous symmetry development dictated by the directions of

SIA diffusion [33]. As the governing kinetics for the phase separations and defect reactions

are different, i.e., the former by mass transport and the latter by the mutual recombina-

tion, the developments of characteristic length and symmetry of superlattices can occur at

different stages. Prior to the present work, it has not been clearly demonstrated how these

competing kinetics will affect the superlattice formation, and how the superlattice symmetry

is determined at the continuum scale. Both of the above issues are the focus of this study.

In this work, we propose a model incorporating both the thermodynamic origin and the

kinetic reactions during void superlattice formation under irradiation. By incorporating

gradient thermodynamics and a Cahn-Hilliard type diffusion equation [41], a phase field

model is developed to investigate the formation and evolution of void superlattices. A new

scheme capturing the 1D SIA diffusion is proposed, without the calculations of the intersti-

tial probability as in previous study [38]. The new approach is straightforward to implement

in 2D and 3D with arbitrary anisotropy in SIA diffusion. As two examples, BCC and FCC

types of void superlattices in 3D are obtained in phase field simulations. Consistent with

previous studies, it is found that the characteristic length (related to the lattice parameter

of the superlattice) is determined by an intrinsic thermodynamic instability influenced by

the reaction kinetics, and the superlattice symmetry is dictated by the anisotropic diffusion

of SIAs. Moreover, the competing kinetics for phase separation and defect reactions lead to

three different formation mechanisms of void superlattices. By combining phase field simu-
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lations and theoretical analysis, a diagram capturing the selection of superlattice formation

mechanisms is built with regards to irradiation conditions (e.g., dose rate) and reaction

kinetics (e.g., mutual recombination).

METHODOLOGY

As mentioned above, both vacancy and SIA types of defects are generated in metals

and alloys under irradiation. Depending on the size and configuration they take (point and

cluster defects), these defects can be further divided into numerous types, and each type

requires a rate equation to describe its evolution, similar to what has been done in previous

instability analyses [31, 32, 40]. To simplify the theoretical analysis, we here identify the

minimum number of essential factors that may be needed for void superlattice formation. To

form voids, vacancy supersaturation in the matrix is necessary, which in turn needs defect

production, transport, as well as the annihilation by recombination and sink absorption.

A thermodynamic description of vacancies in the matrix and voids is needed as well. To

simulate recombination, the evolution of SIAs needs to be considered, with its anisotropic

diffusion governing the symmetry developed during phase separations. Following the mean

field description, only the concentrations of vacancies and SIAs are considered in our theo-

retical model, which are the minimum factors required for void superlattice formation. The

evolution of time- and spatially-dependent concentrations, cv and ci for vacancies and SIAs,

respectively, are given by:

∂cv
∂t

= O ·MvO(
δF

δcv
)−Kcv

n∑
i=1

ci + Pv + ξv (1)

∂ci
∂t

= O ·DiOci −Kcvci + Pi + ξi, i = 1, 2, ..., n (2)

Here subscripts v denote vacancy, and i = 1, 2, ..., n denote the ith type of SIAs. Pv and Pi

are the production rates (related to the dose rate). Mv and Di denote the atomic mobility of

vacancies and the diffusivity of SIAs, respectively. F is the total free energy of the system.

K is the reaction rate for recombination. In Eq. 1, we further ignore sink absorption

in its isotropic form, which could affect vacancy accumulation rate but not significantly

the competition between phase separation and mutual recombination. The reaction rate
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for recombination is reduced to a constant K to better elucidate the competing kinetics.

In reality it is given by K = 4πRiv(Di+Dv)
Ω

, where Riv is the recombination radius, Dv is

the vacancy diffusivity, and Ω is the atomic volume. ξv and ξi are Langevin noise terms

simulating fluctuations in vacancy and SIA concentrations, which meet the fluctuation-

dissipation theorem.

Our model couples the rate theory for production and reaction kinetics [42], and the

Cahn-Hillard approach for the phase separation description of void formation [24, 28]. In

phase field model, a void is described as a new “phase”, the formation of which is the

result of vacancy diffusion and accumulation [38, 43–54]. In addition, n types of SIAs are

introduced in our new approach, each of them diffusing anisotropically along a particular

crystallographic direction, which could be related to the symmetry of the host matrix. For

example, in a bcc host matrix, if the SIAs diffuse in 1D along 〈111〉, there are four types

of SIAs (n = 4), which diffuse along [111], [111̄], [11̄1], [1̄11], respectively. In an fcc host

matrix, if the SIAs diffuse in 1D along 〈110〉, there are six types of SIAs (n = 6), which

diffuse along [110], [011], [101], [11̄0], [011̄], [1̄01], respectively. Note Pv =
∑n

i=1 Pi = P , i.e.,

irradiation produces the same amount of vacancies and SIAs due to mass conservation. And

the production rate for each type of SIAs should be P/n, since all types of SIAs have the

equal probability of being produced by irradiation.

The total free energy F can take different forms depending on the nature of the diffusion

process. In this case, the void formation due to vacancy accumulation can be described in

a way similar to a phase separation. In general, the total free energy in an inhomogeneous

system is formulated based on gradient thermodynamics [41],

F =

∫
V

(f +
1

2
κ|Ocv|2)dV (3)

f is the local free energy density simplified to a double-well function in a dimensionless

form as follows, and κ is the coefficient of gradient energy, which is associated with the

interfacial energy (interface between void and matrix).

f ∗(cv) = c2
v(1− cv)2 (4)

Note that Eq. 4 is a generic form for phase separations, which can capture both nucle-

ation/growth process (with thermal noise combined) and spinodal decomposition. For ex-
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ample, when the initial concentration is within the spinodal region (0.2113 < cv < 0.7887),

spinodal decomposition occurs without thermodynamic barrier. Otherwise, nucleation and

growth are expected as those in conventional first-order transitions. The above simplified

equation of free energy density is chosen because: (1) an analytic prediction of the charac-

teristic length of void superlattices can be obtained; (2) it is a representative formulation

that can be solved efficiently in phase field modeling and simulations. In order to analyze

the void superlattices observed in experiments, more accurate energetic descriptions should

be employed, as will be shown in our discussions.

A phase field model to investigate the void superlattice formation is developed based on

the open source MOOSE finite element framework [55, 56]. In MOOSE, the phase field

kinetic equations (e.g., Cahn-Hilliard equation) are implemented in a general form which

is separated from the thermodynamic information. In addition, the spatial discretization

is finite-element-based, which can accommodate various kinds of geometries and boundary

conditions. Implicit time integration is utilized with adaptive time stepping, employing the

preconditioned Jacobian-free Newton Krylov method and utilizing capabilities provided by

the libMesh and PETSc libraries [57, 58].

Without loss of generality, all simulations are performed using dimensionless parameters.

The kinetic equations dominating the evolution of dimensionless parameters are the same

as Eq. 1, with Mv, Di, f , K and P substituted by their dimensionless counterparts (i.e.,

M∗
v , D∗i , f

∗, K∗ and P ∗). In the following sections, the analytical derivation is based on real

material parameters so that the predicted superlattice parameters can be directly compared

with experimental observations. In phase field models, the relation between real parameters

and dimensionless parameters determines the length and time scales of the simulations [59],

provided the thermodynamic and kinetic data are available. The gradient coefficient κ (J/m)

can be determined from the interfacial energy [41, 59], and the unit dimensionless length

corresponds to a real length of

l0 =

√
∆f ∗ · κ
∆f · κ∗

(5)

where superscript * indicates the dimensionless parameters. ∆f is energy barrier between

void and matrix phases, in the unit of J/m3. Thus the unit dimensionless time corresponds

to a real time of
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t0 =
M∗

v ·∆f ∗

Mv ·∆f
l20 (6)

Then the dimensionless production rate and recombination rate can be determined

through

P ∗

P
=
K∗

K
= t0 (7)

The dimensionless production rate P ∗ and recombination rate K∗ are determined by

given real defect production rate P , recombination rate K, and t0. P is in the unit of dpa/s

(when t0 is in s), with dpa being displacement per atom and carrying the same unit of cv.

P represents the effective dose rate in reality.

RESULTS

In our model a set of concentration order parameters {cv, c1, c2, ..., cn} is employed to

describe the defect evolution in materials. cv = 1 indicates the formation of a void. A

two-dimensional (2D) computational system with 10000 quad elements is constructed, with

a homogeneous configuration {cv, c1, c2, ..., cn} = 0 as the initial condition. Langevin noise

terms are employed to initiate the phase separation, the dimensionless form of which is

represented by a Gaussian function, with an expected value of zero and a variance of 10−5

in the simulations. All the dimensionless parameters used in the simulations are listed in

TABLE I. As will be shown in the discussion, the formation of void superlattices occurs in a

specific parameter space for vacancy mobility, production and recombination rates. Outside

that parameter space, superlattice cannot form.

Formation of square void superlattices

In 2D the SIA diffusion directions are the [10] and [01] directions (e.g., in a square lattice

host matrix), with diffusivity tensors in the following forms:

8



D∗1 =

 10 0

0 0.01

 (8)

D∗2 =

 0.01 0

0 10

 (9)

First we consider a case with a relatively high production rate (P ∗ = 0.016) andK∗ = 0.16

as the dimensionless recombination rate of vacancies and interstitials. The evolution of the

vacancy concentration field is shown in FIG.1. In FIG. 1(a) and (b) fluctuations of the

vacancy concentration can be observed before void formation occurs, which is caused by the

thermodynamic instability described in Eq. 4. As the vacancy concentration increases to

a certain extent (i.e., approaching the spinodal region), the homogeneous vacancy distri-

bution becomes unstable with respect to infinitesimal fluctuations and concentration waves

can develop. When the amplitudes of the vacancy concentration waves are large enough,

voids form at the sites with high vacancy concentrations (FIG. 1(c)). We observe that char-

acteristic length and symmetry of a square superlattice are developed at the beginning of

vacancy modulation (FIG. 1(a)), which determines the initial distribution of voids (FIG.

1(c)). Coalescence of voids can also be observed during the evolution, e.g., the two rows of

voids on the top coalesce to one row (FIG. 1(c)-(e)). Finally, a stable void superlattice forms

(FIG. 1(f)), without further coarsening and coalescence because of the balance of production

and recombination.

To further understand the formation mechanisms of voids and void superlattices, we plot

the concentration fields of the two types of SIAs in FIG. 2. The concentration fields of c1

at dimensionless time t∗ = 836, 1167, 2000 are shown in FIG. 2(a)-(c), while those of c2 are

shown in FIG. 2(d)-(f), which corresponds to the microstructures in FIG. 1(a), (d) and (f).

The SIA concentration field c1 exhibits a horizontal layer structure with vertical modula-

tions (FIG. 2(a)-(c)). Similarly, the c2 field has a vertical layer structure with horizontal

modulations (FIG. 2(d)-(f)). The modulation direction is associated with the 1D diffusion

direction for each type of SIA. For example, the 1D diffusion direction of c1 is [10], resulting

in a layer structure along the [10] direction, while the modulation direction is normal to [10].

The coupling between vacancies and SIAs can also be observed. Considering the superpo-

sition of FIG. 2(c) and (f), a 2D modulated structure can be expected. Such a modulated
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structure should be directly related to the void superlattice in FIG. 1(f), i.e., a void forms

where the SIA concentration is zero, which is due to the recombination of vacancies and

SIAs. The modulations of SIAs appear to coincide with vacancy modulations (comparing

FIG. 2(a) and (d) with FIG. 1(a)). As we can see in the final microstructure (FIG. 2(c) and

(f), FIG. 1(f)), the SIA concentration in voids is zero due to the recombination of vacan-

cies and SIAs. This suppresses SIA transport across voids in our model, without explicitly

building this into the kinetic equations.

Results of another simulation with relatively low production and recombination rates

(P ∗ = 0.006 and K∗ = 0.06) are shown in FIG. 3. Because of less ordering in the initially

formed void superlattice in FIG. 3(a) (compared with FIG. 1(c)), significant coarsening and

coalescence can be observed in FIG. 3(a)-(e). The evolution stops when a perfect superlattice

structure forms (FIG. 3(f)). Compared with FIG. 1(f), both the void size and the lattice

parameter in FIG. 3 are larger because of the coarsening and coalescence of voids.

In both of the above cases, the production rate is sufficiently high so that the vacancy

concentration can go into the spinodal region (
√
P/K >0.2113). Therefore, phase decom-

position can occur before or along with the ordering of the voids. However, this condition

is not necessarily satisfied especially when the production rate is low and the recombination

rate is high. Because of the balance of the production and recombination of vacancies and

SIAs, the steady state homogeneous vacancy concentration could be outside the spinodal

region. In such a case, we cannot expect spinodal decomposition any more. Instead, a

nucleation and growth mechanism could occur for voids to form, as shown in FIG. 4. In this

simulation, the production and recombination rates are chosen as P = 0.007, K = 0.16. A

single void nucleates first in FIG. 4(a). As the first void grows larger, another void nucleate

at a position being aligned with the existing one (FIG. 4(b)), due to a 1D SIA diffusion

shadow. With more and more voids nucleating in alignment, the system finally evolves to a

defect-rich superlattice (FIG. 4(c)-(f)). In this case, ordering of voids takes place first.

Formation of hexagonal void superlattice

To explore the effects of host matrix symmetry and the directions of SIA diffusion we

considered the case of a hexagonal lattice. Here, SIAs diffuse along [10], [−1,
√

3] and

[−1,−
√

3] directions (e.g., in a hexagonal lattice host matrix) with diffusivity tensors in the
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following forms:

D∗1 =

 10 0

0 0.01

 (10)

D∗2 = RTD1R (11)

D∗3 = (R2)TD1R
2, (12)

where R is the matrix for a 120◦ rotation and superscript T means the matrix transpose.

The simulation results are shown in FIG. 5. As a result of a change in SIA 1D diffusion

directions, a hexagonal superlattice forms, which is different from the square superlattice

previously obtained. We observe that the initial void distribution is far from a perfect

superlattice (FIG. 5). Through coarsening and coalescence it evolves to a perfect hexagonal

superlattice (FIG. 5(a)-(f)). During this process, not only individual voids but also entire

void rows could disappear (circled in FIG. 5(c) and (e)).

Formation of BCC and FCC void superlattices

The effects of SIA diffusion directions on the superlattice symmetry are also investigated

in 3D. In Fig. 6 (a), four types of SIAs are considered with diffusion direction 〈111〉, leading

to the formation of a BCC superlattice. In Fig. 6 (b), six types of SIAs are considered with

diffusion direction 〈110〉, leading to the formation of an FCC superlattice. The formation

of BCC and FCC superlattice demonstrate that our new approach is sufficiently general to

capture various kinds of anisotropic SIA diffusions in both 2D and 3D. A detailed discussion

on the symmetry selection of void superlattices will be presented in the next section.

DISCUSSION

From a theoretical point of view, a void superlattice features certain lattice parameters

and lattice symmetries, which vary with materials and irradiation conditions (e.g., temper-

ature and dose rate) [23]. To understand the formation mechanism of void superlattices,

we further investigate the effects of materials parameters and irradiation conditions on the

characteristic length and symmetry of void superlattices. The results presented in the previ-

ous section clearly indicate three different kinds of formation mechanisms: (I) high density
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of voids form via spinodal decomposition with the concurrent development of characteristic

length and symmetry; (II) high density of voids form via spinodal decomposition with-

out ordering, which develops during coarsening and coalescence; (III) isolated voids form

through nucleation with spatial alignment, and superlattices form by further nucleation and

growth of voids with the same alignment. These different mechanisms are caused by the

competition between the kinetics for phase separations which can occur by either spinodal

decomposition or void nucleation and growth, and the kinetics for ordering which is induced

by the recombinations. As will be discussed below, the competition affects both superlattice

formation mechanisms and superlattice parameters. For the sake of computational efficiency

and consistency, square superlattices in 2D are considered in the following.

Characteristic length of the void superlattice

For different formation mechanisms, the governing kinetics for the characteristic length

(thus the superlattice parameter) development varies. For mechanism (I), a characteristic

length develops during spinodal decomposition and is stabilized by the concurrent develop-

ment of ordering. In this case a theoretical analysis can be done to predict the superlattice

parameter, as has been done in our previous work [33]. The derivation is provided here as

well for completeness as the kinetic equation is different here.

Using Q = K
∑n

i=1 ci, Eq. 1 can be reduced to

∂cv
∂t

= ∇ ·Mv∇
δF

δcv
−Qcv + P (13)

In the above form, Eq. 13 is a generalized diffusion equation (Cahn-Hilliard type) with

a source term (P ) and a sink term (Qcv). Only the first term involves the thermodynamic

factor, which is scaled by the kinetic coefficient of mobility, capturing the spatial migration

of vacancies. Note that the reaction term could be nonlinear since ci in Q are coupled

with cv. For simplicity, Mv and Q are taken as constants, and Eq. 13 becomes a linear

partial differential equation of cv, which can be analyzed in reciprocal space through Fourier

transform,

∂c̃v
∂t

= [−Mvf
′′k2 −Mvκk

4 −Q]c̃v + Pδ(k) = R(k)c̃v + Pδ(k) (14)

12



where c̃v is the Fourier transform of cv, and k is the magnitude of the wave vector (k = |k|)

in reciprocal space. f ′′ is the second-order derivative of the free energy density function.

Note that the last term in Eq. 14 is nontrivial only when k = 0, i.e., the uniform change

of concentration, which does not contribute directly to the instability caused by the phase

separation. For k 6= 0,

R(k) = −Mvf
′′k2 −Mvκk

4 −Q (15)

At a given k, if R(k) > 0, the system will lose stability with respect to infinitesimal

concentration fluctuation for the wave with the wave vector magnitude k, i.e., such a wave

will develop. For the first developed wave with kc, R(k) should reach the maximum at kc.

By solving the critical conditions for kc, the critical wavelength can be determined [33] (see

Appendix A),

λc =
2π

kc
= 2π(

κMv

Q
)1/4 (16)

The critical concentration wavelength determines the lattice parameter of the void super-

lattice initially formed under irradiation, which is related to the 1D SIA diffusion direction.

For example, λc = asq in a 2D square lattice, λc = (
√

3/2)ahex in a 2D hexagonal lattice,

λc = (
√

2/2)aBCC in a 3D BCC lattice, and λc = (
√

3/3)aFCC in a 3D FCC lattice.

To validate our theoretical predictions, we perform a series of phase field simulations with

different recombination rates and vacancy mobilities. The parameters are chosen appropri-

ately for the mechanism (I) to be effective. The resulting superlattices are shown in FIG.

7. The comparison between simulated superlattice parameters and analytical predictions

using Eq. 16 are presented in TABLE II. In the theoretical calculations Q = K
√
P/K

(corresponds to the steady state vacancy and SIA concentrations before modulation) and

P ∗ = 0.016 are used for all the four cases.

It can be found that the theoretical predictions are in good agreement with the phase field

simulation results both qualitatively and quantitatively. The simulation results are slightly

above the theoretical predictions. One possible reason is the periodic boundary condition

used in the simulations. Note that the number of void rows has to be an integer, so that the

lattice parameter can only be discrete (e.g., ..., 16, 13.33, 11.44, 10, 8.89, 8, 7.27, 6.67, ...) in

the simulations. If the predicted critical wavelength by Eq.16 is not exactly the above value,
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coarsening and coalescence may increase the wavelength to the nearest lattice parameter

compatible with the periodic boundary condition.

To compare the results to real materials, Eq. 16 is also utilized to estimate the lattice

parameters of void superlattices in molybdenum at 580◦C and 900◦C [33]. The free energy

density f as a function of temperature can be approximated by a regular solution model

[60]. κ = 3.92 × 10−10 J ·m−1 can be determined, which is associated with the interfacial

energy [59, 61]. At 580◦C, Mv = 1.33× 10−25 m5 · J−1 · s−1 is determined from the vacancy

diffusivity [60, 62]. Q is estimated to be 0.374s−1, so that the critical wavelength is 21.6nm,

which corresponds to a lattice parameter in BCC about 30.5 nm [32, 33, 42]. At 900◦C,

Mv = 2.10×10−23m5 ·J−1 ·s−1. Q is estimated to be 10.2s−1 [33, 60, 63] , so that the critical

wavelength is 33.5 nm, which corresponds to a lattice parameter about 47.4 nm in BCC.

In experimental observations, the lattice parameters of void superlattices in molybdenum

are determined as 27 nm and 49 nm, at 580◦C and 900◦C, respectively [23, 64]. Detailed

calculations are presented in Appendix B.

The analytical solution predicts the formation of a void superlattice following Mechanism

(I) with concurrent spinodal decomposition and ordering very well. For mechanism (II),

Eq.16 is still suitable to predict the wave length selection during spinodal decomposition.

As the void superlattice is stabilized during subsequent coarsening and coalescence, the

resulting superlattice parameter will be larger than that given by Eq.16. In this case, λc

is governed by coarsening kinetics. As for mechanism (III), because the system may not

enter the spinodal region, the critical wavelength is not applicable anymore. Instead, λc is

determined by void nucleation and growth kinetics.

Selection of the formation mechanisms

Theoretically, when R(k) < 0 for all k, Mechanisms (I) or (II) will not be expected.

With the simplified model of Eq. 1, the maximum value of cv is
√
P/K, which corresponds

to a steady state homogeneous vacancy concentration (due to dynamic balance between

vacancy production and recombination). In order to develop vacancy modulations as well

as a superlattice through spinodal decomposition, the maximum cv should be inside the

spinodal region. In addition, the thermodynamic driving force of the spinodal decomposition

should be large enough to overcome the barrier from recombination (See Appendix A).

14



max{−f ′′(cv), c ∈ [0,
√
P/K]} ≥

√
4κ
√
PK

Mv

(17)

When this condition is satisfied, the competition between mechanisms (I) and (II) can

be elucidated by examining the kinetics for the phase decomposition, controlled by the

production rate P and the vacancy mobility Mv, and that for recombination, controlled

by the recombination rate K. In particular, when the maximum value of f ′′ is reached at√
P/K, and also the equality in Eq. 17 is reached, the above inequality becomes

−f ′′(
√
P/K) =

√
4κ
√
PK

Mv

(18)

The above equation describes the ideal condition for phase decomposition and void or-

dering to take place concurrently. In such a condition, perfect superlattices are expected

directly from spinodal decomposition without coarsening. The superlattice parameters are

predictable using Eq. 16. In fact, the simulation results in FIG. 7 are obtained in this condi-

tion. Note that a critical value of Mv could be determined by Eq. 18 for given P , K and f .

If Mv is smaller than the critical value, there will not be vacancy concentration modulation

since Eq. 17 will not be satisfied. Increasing in Mv will accelerate phase separation kinetics

(relative to recombination), leading to imperfect superlattices from initial phase separation.

To further elucidate the effects of vacancy mobility, production, and recombination rates

on the selection of superlattice formation mechanism, parametric studies are performed

with varying P and Mv. In FIG. 8, the vacancy mobility is increased (M∗
v = 3, compared

to M∗
v = 0.3 in FIG. 1). Because of a larger mobility, vacancy concentration modulation

develops faster, with less influence from the recombination between vacancies and SIAs. In

other words, vacancy mobility dominates the kinetic competition between Mv and K. Since

the symmetry of a void superlattice is mainly contributed from the recombination, no clear

symmetry is developed at the initial void formation (FIG. 8(b)). The Fourier transform

patterns are shown as insets for corresponding microstructures. The origin (k = (0, 0)) in

reciprocal space is not considered, since it does not include any modulation information. It

can be found that a ring-like pattern forms at the beginning (FIG. 8(a)), which gradually

evolves to individual spots in FIG. 8(b)-(f). Such results suggest that only a characteristic

wavelength (related to the radius of ring pattern) is developed at the beginning, while a

characteristic symmetry is developed during the subsequent coarsening and coalescence. In
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contrast, a superlattice close to perfect is developed during the initial formation in FIG.

1(c), with all the voids at almost the same size (and a uniform inter-void spacing). As a

result, only minor adjustments are observed in the subsequent evolution. Note that when a

perfect superlattice is formed, coarsening and coalescence are suppressed as the system has

entered a thermodynamically metastable state.

In Mechanism (I) and (II), the production rate is sufficiently high so that the vacancy

concentration can go into the spinodal region (
√
P/K >0.2113). However, this condition is

not necessarily satisfied especially when the production rate is low and the recombination

rate is high. Because of the balance of production and recombination, the steady state ho-

mogeneous vacancy concentration could be outside the spinodal region. In such a case, we

cannot expect spinodal decomposition any more. Instead, a nucleation and growth mech-

anism could occurs, and the formation of a superlattice depends on the interplay between

nucleation rate and growth kinetics, through Mechanism (III).

A typical superlattice formation process through void nucleation and growth is shown

in FIG. 9 and FIG. 10. With an existing void, a new void tends to nucleate at a position

aligned (either horizontally or vertically) with an existing one (FIG. 9(a)), which is due to

the 1D SIA diffusion (FIG. 10). The alignment of voids finally evolves into a superlattice

(FIG. 9(b)-(f)). From the Fourier transform patterns, some symmetry is developed first

((FIG. 9(b) and (c))), and the characteristic length appears during subsequent nucleation

and growth. The characteristic length finally developed is dictated by the interplay between

nucleation rate and vacancy mobility. Note the difference between FIG. 9 and FIG. 4. In

FIG. 4, we can see that the first void grows larger when the second one nucleates, because

of a higher vacancy mobility (M∗
v = 1). As a result, both the void size and the inter-void

spacing becomes larger, which leads to a larger lattice parameter of the final void superlattice

(FIG. 4).

The selection of the formation mechanism is dictated by the interplay among vacancy

mobility, the recombination rate, and the production rate, which correspond to the three

terms in Eq. 1, respectively. The competition between P and K determines if the sys-

tem enters the spinodal region. The competition between Mv and K determines if phase

separation is accomplished earlier than void ordering, or otherwise. Accordingly, diagrams

describing the selection of void superlattice mechanisms with respect to P and K and Mv

can be constructed. An example of such diagram with respect to P and K at a given M∗
v
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is shown in FIG. 11. Simulation results of void superlattice formation through different

mechanisms are represented by dots with different colors. The void superlattices formed

through mechanism (I) are colored by red, (II) blue and (III) green. The solution of Eq. 18

is described by the red line, representing the ideal condition (on P and K) for Mechanism

(I), from which a small deviation will not change the dominant mechanism. With sufficient

deviation, the formation mechanism changes to (II) when P is high and K is low, and to

(III) when P is low and K is high. The boundaries among those three regions are sketched

by using black dashed lines. Note that no boundaries are suggested on the left of region (II)

and bottom of region (III). With very low production or low recombination, superlattice

formation may take very long time or even not occur due to low vacancy accumulation or

insufficient ordering. Even though the effect of vacancy mobility Mv is not explicitly shown

in FIG. 11, it can be deduced from the diagram as well. Since there are three linear terms

in Eq. 1, increasing Mv should be equivalent to decreasing P and K. Note that all the lines

(the red line and the black dash lines) are non linear. For example, (P ∗ = 0.016, K∗ = 0.16)

is in region (I) while (P ∗ = 0.006, K∗ = 0.06) is in region (II). As a result, an increase of

Mv could change the formation mechanism from (I) to (II) (comparing FIG. 8 and FIG. 1).

In addition to such a ”shift” effect, an increase of Mv could also change the growth rate in

Mechanism (III) (comparing FIG. 9 and FIG. 4).

In reality, the three different regions in FIG. 11 represent the formation mechanisms

under different irradiation conditions. In experiments, temperature and dose rate are the

parameters that can be controlled. The major effect of temperature is the change of vacancy

mobility, i.e., mobility is high at high temperature. The effect on recombination rate is less

significant since recombination is dominated by SIA diffusion, which is usually associated

with very a low barrier and thus weak temperature dependence. However, an increase in

temperature may change the anisotropy of SIA diffusion, which transitions from 1D to 3D.

According to Eq. 18 and FIG. 11, a balance exists between P , Mv and K for the ideal

condition of a void superlattice formation, as suggested by Eq. 18 and the red line in FIG.

11. Near this condition mechanism (I) dominates. An increase in dose rate and temperature

will shift the formation mechanism to (II). Without the available data on the sink absorption

and thermodynamics of SIAs, the SIA concentrations could be over estimated in the current

simulations, so that recombination as well as void ordering are enhanced. Therefore, the

condition for mechanism (III) may be difficult, if not impossible, to realize in experiments.
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From theoretical point of view, Eq. 18 (red line in FIG. 11) can be considered as the

ideal condition for void superlattice formation. The formation mechanism changes (from I

to II or III) if there is a small deviation from the ideal condition. A large deviation will

result in the absence of void superlattices. The above three different mechanisms are also

suggested by experimental observations. An imperfect void superlattice is observed in Nb,

in a high dose rate ∼ 2× 10−3dpa/s and medium temperature T/Tm ∼ 0.37 [65], which is

consistent with the microstructure generated through Mechanism II. Void alignments rather

than a superlattice are observed in Cu-Ni, in a low dose rate ∼ 3.5 × 10−7dpa/s and

high temperature T/Tm ∼ 0.51 [66], which indicates the Mechanism III. To obtain a perfect

superlattice through Mechanism I, a high dose rate and low temperature are required, which

is consistent with the observations in U-7Mo system, in a nuclear fuel irradiated in research

reactors at T/Tm ∼ 0.28 [67].

Characteristic symmetry of the void superlattice

From the above simulation results, it is clear that the symmetry of a void superlattice

is directly related to the 1D SIA diffusion directions. Parallel to the symmetry breaking

concept in phase transitions, the self-organization of voids originates from the symmetry

breaking of diffusivity from isotropic to anisotropic. And the symmetry of a void superlattice

should be determined by the broken symmetry. The broken symmetry can be described

by 1D SIA diffusion directions in real space, which corresponds to k-planes in reciprocal

space. Simulation results of void superlattices as well as their Fourier transform patterns

for different kinds of anisotropic diffusivities are shown in FIG. 12.

In FIG. 12(a), the diffusivity tensors are those described by Eq. 8 and 9. Note that

diffusivity is a second-rank tensor, which has central symmetry, so that the diffusivities of

different types of SIAs in this case are related by 4-fold rotational symmetry (double the

number of SIA types). In real space, the 1D SIA diffusion directions are [10] and [01], which

correspond to k-planes of (10) and (01) in reciprocal space (k-points, k-planes and k-lattice

refer to the points, planes and lattice in reciprocal space). Considering a set of parallel (10)

k-planes and a set of parallel (01) k-planes, their intersection k-points construct a square

k-lattice. The inverse Fourier transform of such a square k-lattice is a square lattice in real

space, which is the void superlattice in FIG. 12(a) with 4-fold rotational symmetry.
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When the diffusivity tensors are described by Eq. 10-12, the 1D SIA diffusion directions

are [1, 0], [−1,
√

3] and [−1,−
√

3]. Similar to the above analysis, a hexagonal k-lattice can

be constructed by three sets of k-planes, which correspond to a hexagonal void superlattice

in real space with 6-fold rotational symmetry (in FIG. 12(b)).

The above analysis can be easily generalized to 3D. For example, if the 1D SIA diffusion

direction is 〈111〉, (1,1,0) type of k-points are determined by four {111} k-planes, which

leads to an FCC k-lattice, corresponding to a BCC lattice in real space. In fact, it has been

observed in experiments that a 1D SIA diffusion along [111] does not cause the order of voids

along [111] [68], but ordering of {110} planes. As it is suggested by our simulation results

(FIG. 2), a 1D SIA diffusion along [111] leads to the modulation of all the directions normal

to [111], corresponding to the (111) k-plane in reciprocal space. Similarly, if the 1D SIA

diffusion direction is 〈110〉, (1,1,1) types of k-points are determined by six {110} k-planes,

which leads to a BCC k-lattice, corresponding to a FCC lattice in real space. Also based on

the analysis in reciprocal space, the characteristic length of a superlattice is directly related

to the inter-plane spacing in real space, since it is dictated by the k-lattice.

Note that the characteristic symmetry of a void superlattice is related to the 1D SIA

diffusion directions, regardless of the formation mechanisms of (I) (II) and (III).

Limitations

Several major simplifications warrant a discussion, e.g., SIA thermodynamics and sink

absorption are not explicitly considered. Such a treatment may lead to an over estimate of

SIA concentrations at the steady state. In our simulations, the steady state concentration

of vacancies and SIAs are at the same order of magnitude. In reality, the value of vacancy

concentration should be orders of magnitude larger than the SIA concentration, caused by

the different sink absorption rates of vacancy and SIA. Effectively, high SIA concentrations

delays vacancy accumulation and enhance void ordering since here SIA diffusion is purely

anisotropic. We do not consider the transition of SIAs between different diffusion directions,

e.g. the rotation of crowdions, which would effectively reduce the degree of anisotropy in

the diffusion. Also, the clustering of SIAs and formation of SIA loops are not considered

as well due to the lack of thermodynamic description of SIAs. As discussed in details in

literature [38, 39], the ratio between the diffusivities of SIA and vacancy, DSIA/Dv, plays a
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role on the ordering of voids. In our simulations we focus on the the selection mechanism

of void superlattice formation, and we assume DSIA is large enough so that it will not be

the limiting factor for the superlattice formation. This simplification can be refined if the

diffusivity data for real material system is available. In addition, a simplified free energy

density formulation is adopted for vacancies in our model, which is convenient for both

analytical derivations and numerical simulations. Such a free energy could be substituted by

more accurate physical formulations (e.g., regular solution model) for systems with available

thermodynamic and kinetic data. These assumptions are used to simply the problem to

include only several essential factors for void superlattice formation and to elucidate the

nature of their competition. They may limit the direct application of the current results

in real material systems. However, we argue that our major findings, such as the different

superlattice formation mechanisms resulting from the competing kinetics and the lattice

symmetry selection as a result of anisotropic SIA diffusion, will still hold in case without

these assumptions.

In literature, a number of analytical methods [69, 70] have been developed to predict the

characteristic length and symmetry of an ordered and self-organized system. In those meth-

ods, the characteristic length and symmetry are determined by thermodynamic equilibrium

in closed systems. However, this work considers an open system under irradiation in this

work, and continuous external stimuli keep the system far from equilibrium. In addition,

the void superlattices we obtained are not thermodynamically stable, and the free energy

formulation in our model is isotropic (without any embedded spatial symmetry). Another

analytical method is developed by the construction of a non-equilibrium potential to substi-

tute the effects of source and sink terms [13, 18]. Such a treatment works for specific cases

(e.g., ballistic mixing). However, it may not be easily generalized to all kinds of sources

and sinks. As a result, the above methods are not adapted in our current analysis, and a

mathematical substitution of kinetic anisotropy by thermodynamic anisotropy is beyond the

scope of this work.

CONCLUSIONS

The physical origin and formation mechanism of void superlattices under irradiation in

metals and alloys are systematically investigated through phase field modeling and simula-
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tions. The major findings include:

• Depending on the irradiation conditions, there are three possible formation mechanisms

of void superlattices, according to the kinetics for the characteristic length and that for

symmetry development.

• The characteristic length of a void superlattice is determined by the interplay of ther-

modynamic driving forces and the production/reaction rates of voids and interstitials.

• The characteristic symmetry of a void superlattice is dictated by the 1-dimensional

diffusion directions of self-interstitial atoms, which can be systematically analyzed and pre-

dicted in reciprocal space.
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APPENDIX A: DETERMINATION OF THE CRITICAL CONCENTRATION WAVE-

LENGTH

Starting from Eq. 15,

R(k) = −Mvf
′′k2 −Mvκk

4 −Q (A1)

when R(k) > 0, the system will lose stability to the concentration wave with wave vector

k, i.e. such a wave will develop. Assuming the first developed wave is kc, R(k) should reach

maximum at kc. The critical conditions in determining kc should include the following two

equations,

dR

dk
|k=kc = 0, (A2)

R(kc) = 0. (A3)
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As a result, f ′′ = −2κk2
c can be obtained from Eq. A2. Combined with Eq. A3, we can

determine the critical wave vector,

kc = (
Q

κMv

)1/4, (A4)

and the corresponding critical wave length is,

λc =
2π

kc
= 2π(

κMv

Q
)1/4. (A5)

Even though f ′′ is not in Eq. A5 explicitly, it is the thermodynamic driving force for

the spinodal decomposition, which should be large enough to overcome the barrier from

recombination, i.e., R(k) ≥ 0. With the expression of kc through Eq. A4 and expression of

R(k) through Eq. A1, the condition of R(k) ≥ 0 leads to the following inequality,

−f ′′ ≥
√

4κQ

Mv

. (A6)

Q = Kcv and cv =
√
P/K for steady state homogeneous vacancy concentration. Also cv

should be inside the spinodal region, which leads to the inequality of Eq. 17.

APPENDIX B: DETERMINATION OF VACANCY MOBILITY AND VOID IN-

TERFACIAL ENERGY IN MO

For Mo, the interfacial energy between void and matrix is reported as γ = 3.25J/m2 [61],

and the heat of mixing is Emix = 3.03 × 1010J/m3. Thus the gradient coefficient can be

determined as [59]

κ =
9γ2

324f
=

9γ2

8Emix
= 3.92× 10−10J/m. (B1)

And the interface width can be determined as [41]

w = 24cv
√

κ

4f
= 4.55× 10−10m. (B2)

According to the regular solution model, 4f ∼ 0.25Emix. The vacancy diffusivity in Mo

can be described as [60],

Dv = 7.44× 10−8 exp
−1.45

kbT
m2/s (B3)
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kb is the Boltzmann constant.

Vacancy mobility can be determined as follows, when a regular solution model is adopted

in the free energy formulation.

Mv =
DvVm
RT

, (B4)

where R is the gas constant, and Vm is the molar volume of Mo.
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FIGURE LEGEND

FIG. 1. Simulation results of the formation of a square void superlattice. Dimensionless

time t∗: (a) 836, (b) 876, (c) 948, (d) 1167, (e) 1351, (f) 2000.

FIG. 2. Plots of SIA concentration fields during the void superlattice formation shown

in FIG.1. c1 and c2 at t∗ = 836 (a and d), 1167 (b and e), 2000 (c and f).

FIG. 3. Simulation results of the formation of a square void superlattice through coars-

ening and coalescence. Dimensionless time t∗: (a) 640, (b) 897, (c) 1331, (d) 2060, (e) 2474,

(f) 4096.

FIG. 4. Simulation results of the formation of a void superlattice through nucleation and

growth. Dimensionless time t∗: (a) 365, (b) 640, (c) 872, (d) 986, (e) 1125, (f) 2631.

FIG. 5. Simulation results of the formation of a hexagonal void superlattice through

coarsening and coalescence. Dimensionless time t∗: (a) 702, (b) 919, (c) 1167, (d) 2000, (e)

4936, (f) 7474.

FIG. 6. Simulation results of void superlattices in 3D. (a) a BCC void superlattice, (b)

an FCC void superlattice.

FIG. 6. Simulation results of the formation of void superlattices with different lattice

parameters.

FIG. 7. Simulation results of the formation of a void superlattice with considerable

coarsening and coalescence (Fourier transformation patterns are inset). Dimensionless time

t∗: (a) 66, (b) 87, (c) 171, (d) 229, (e) 326, (f) 2000.

FIG. 8. Simulation results of the formation of a void superlattice through nucleation and

growth (Fourier transform patterns are inset). Dimensionless time t∗: (a) 1553, (b) 2581,

(c) 3112, (d) 3690, (e) 4016, (f) 5886.

FIG. 9. Plots of SIA concentration distributions during the formation of a void superlat-

tice through nucleation and growth. c1 and c2 at t∗ = 1553 (a and d), 3112 (b and e), 5886

(c and f).

FIG. 10. A P −K diagram showing the selection of void superlattice formation mecha-

nism. The colored dots represent the simulation conditions under which a certain formation

mechanism is identified, i.e., red: Mechanism (I), blue: Mechanism (II), green: Mechanism

(III). M∗
v = 0.3 for the simulations.

FIG. 11. Simulation results of void superlattices with different symmetry and Fourier
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transform patterns (inset). (a) a square void superlattice, (b) a hexagonal void superlattice.
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FIG. 1: Simulation results of the formation of a square void superlattice. Dimensionless

time t∗: (a) 836, (b) 876, (c) 948, (d) 1167, (e) 1351, (f) 2000.
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FIG. 2: Plots of SIA concentration fields during the void superlattice formation shown in

FIG. 1. c1 and c2 at t∗ = 836 (a and d), 1167 (b and e), 2000 (c and f).
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FIG. 3: Simulation results of the formation of a square void superlattice through

coarsening and coalescence. Dimensionless time t∗: (a) 640, (b) 897, (c) 1331, (d) 2060, (e)

2474, (f) 4096.
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FIG. 4: Simulation results of the formation of a void superlattice through nucleation and

growth. Dimensionless time t∗: (a) 365, (b) 640, (c) 872, (d) 986, (e) 1125, (f) 2631.
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FIG. 5: Simulation results of the formation of a hexagonal void superlattice through

coarsening and coalescence. Dimensionless time t∗: (a) 702, (b) 919, (c) 1167, (d) 2000, (e)

4936, (f) 7474.

fig10

FIG. 6: Simulation results of void superlattices in 3D. (a) a BCC void superlattice, (b) an

FCC void superlattice.
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FIG. 7: Simulation results of the formation of void superlattices with different lattice

parameters.
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FIG. 8: Simulation results of the formation of a void superlattice with considerable

coarsening and coalescence (Fourier transformation patterns are inset). Dimensionless time

t∗: (a) 66, (b) 87, (c) 171, (d) 229, (e) 326, (f) 2000.
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FIG. 9: Simulation results of the formation of a void superlattice through nucleation and

growth (Fourier transform patterns are inset). Dimensionless time t∗: (a) 1553, (b) 2581,

(c) 3112, (d) 3690, (e) 4016, (f) 5886.
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FIG. 10: Plots of SIA concentration distributions during the formation of a void

superlattice through nucleation and growth. c1 and c2 at t∗ = 1553 (a and d), 3112 (b and

e), 5886 (c and f).

FIG. 11: A P −K diagram showing the selection of void superlattice formation

mechanism. The colored dots represent the simulation conditions under which a certain

formation mechanism is identified, i.e., red: Mechanism (I), blue: Mechanism (II), green:

Mechanism (III). M∗
v = 0.3 for the simulations.
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FIG. 12: Simulation results of void superlattices with different symmetry and Fourier

transform patterns (inset). (a) a square void superlattice, (b) a hexagonal void

superlattice.
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TABLE I: Dimensionless parameters used in phase field modeling and simulations

FIG# P ∗ K∗ M∗v κ∗ D-symmetry

FIG.1 0.016 0.16 0.3 0.5 4-fold

FIG.2 0.016 0.16 0.3 0.5 4-fold

FIG.3 0.006 0.06 0.3 0.5 4-fold

FIG.4 0.007 0.16 1.0 0.5 4-fold

FIG.5 0.008 0.08 0.3 0.5 6-fold

FIG.6(a) 0.016 0.16 0.3 0.5 BCC

FIG.6(b) 0.016 0.16 0.3 0.5 FCC

FIG.7(a) 0.016 0.22 0.9 0.5 4-fold

FIG.7(b) 0.016 0.16 0.3 0.5 4-fold

FIG.7(c) 0.016 0.13 0.17 0.5 4-fold

FIG.7(d) 0.016 0.10 0.11 0.5 4-fold

FIG.8 0.016 0.16 3 0.5 4-fold

FIG.9 0.007 0.16 0.3 0.5 4-fold

FIG.10 0.007 0.16 0.3 0.5 4-fold

FIG.12(a) 0.016 0.16 0.3 0.5 4-fold

FIG.12(b) 0.016 0.16 0.3 0.5 6-fold

TABLE II: Lattice parameters of void superlattice predicted in phase field simulations and

analytical theory

Example Simulation (FIG. 7) Theory (Eq. 16)

FIG.7(a) 11.44 10.41

FIG.7(b) 8.89 8.26

FIG.7(c) 8.00 7.32

FIG.7(d) 7.27 6.80
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